
4574 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

TreasureCache: Hiding Cache Evictions Against
Side-Channel Attacks

Mengming Li , Kai Bu , Member, IEEE, Chenlu Miao , and Kui Ren , Fellow, IEEE

Abstract—Cache side-channel attacks remain a stubborn source
of cross-core secret leakage. Such attacks exploit the timing differ-
ence between cache hits and misses. Most defenses thus choose to
prevent cache evictions. Given that two possible types of evictions—
flush-based and conflict-based—use different architectural fea-
tures, these defenses have to integrate hybrid defense strategies,
incur OS modification, and sacrifice performance to completely
throttle cache side-channel attacks. In this article, we present
TreasureCache against cache side-channel attacks without mod-
ifying OS or sacrificing performance. Instead of preventing cache
evictions with various costs, we advocate to allow cache evictions as
is and hide exploitable evictions in our specialized small eviction-
hidden buffer. The buffer guarantees a fast hit time comparative
to LLC hits. This instantly closes the timing gap between accessing
exploitable blocks when they are in and out of the LLC. Moreover,
with the help of our buffer, we no longer have to disable flush in-
structions or shared memory. A lightweight constant-time flush in-
struction can help TreasureCache to prevent both flush-based and
conflict-based side-channel attacks. We validate TreasureCache
security and performance through extensive experiments. With a
hardware overhead of less than 0.5%, TreasureCache reduces the
secret-leakage resolution by about 1,000 times without introducing
any performance slowdown.

Index Terms—Cache side-channel attack, eviction-hidden
buffer, secure replacement policy.

I. INTRODUCTION

CACHE side-channel attacks that exploit timing channels
caused by LLC evictions remain a stubborn source of

Manuscript received 12 February 2023; revised 19 October 2023; accepted
10 January 2024. Date of publication 16 January 2024; date of current version
4 September 2024. This work was supported in part by the National Key R&D
Program of China under Grant 2020AAA0107705, in part by the National
Natural Science Foundation of China under Grant 62032021, in part by Zhejiang
Key R&D Plan under Grant 2019C03133, in part by Leading Innovative and
Entrepreneur Team Introduction Program of Zhejiang under Grant 2018R01005,
and in part by the Alibaba-Zhejiang University Joint Institute of Frontier
Technologies, and Research Institute of Cyberspace Governance in Zhejiang
University. (Corresponding author: Kai Bu.)

Mengming Li is with the School of Software Technology, Zhejiang Univer-
sity, Hangzhou 310027, China, and also with ZJU-Hangzhou Global Scien-
tific and Technological Innovation Center, Hangzhou 311215, China (e-mail:
mmli@zju.edu.cn).

Kai Bu is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310027, China, and also with ZJU-Hangzhou Global Sci-
entific and Technological Innovation Center, Hangzhou 311215, China (e-mail:
kaibu@zju.edu.cn).

Chenlu Miao is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China (e-mail: clmiao@zju.edu.cn).

Kui Ren is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310027, China, and also with the Zhejiang Provincial
Key Laboratory of Blockchain and Cyberspace Governance, Hangzhou 310027,
China (e-mail: kuiren@zju.edu.cn).

Digital Object Identifier 10.1109/TDSC.2024.3354991

cross-core information leakage [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13]. The timing difference arises from
different access latencies of cache hits and cache misses. To infer
the victim’s access behavior from access latency measurements,
the attacker needs to first evict victim data from the cache
hierarchy. Whether the victim will reaccess the evicted data
or not leads to differentiable access latency for the attacker’s
subsequent cache accesses. According to the eviction strategy,
cache side-channel attacks can be classified into two types—
flush-based and conflict-based [14], [15], [16], [17], [18], [19],
[20], [21], [22]. Flush-based attacks enable the attacker to di-
rectly evict victim data using flush instruction (e.g., clflush
in x86). Conflict-based attacks indirectly evict victim data using
eviction sets. An eviction set consists of sufficient conflicting
addresses that map to the same cache set with victim data [1],
[23]. By accessing these conflicting addresses, the attacker can
fully occupy the target cache set and evict victim data therein
via cache replacement.

Table I classifies typical cache side-channel attacks. Next,
we detail the essence of existing defenses mostly by preventing
cache evictions.

A. Prevention of Cache Evictions

Since the root cause for side-channel attacks is evicting victim
data, a driving strategy for defenses is to prevent cache evic-
tions. The disparity in the exploited hardware logics renders
most defenses hardly effective against both flush-based and
conflict-based evictions. They usually need to unify hybrid
defenses. Cache partitioning promises a stand-alone defense yet
necessitates OS modification and sacrifices performance gains
that the shared LLC offers [24], [25], [26], [27].

Prevention of Flush-Based Eviction: Given that flush-based
evictions require both flush privilege and shared data (Sec-
tion II-A), disabling either of these requirements can prevent
the attacker from evicting victim shared data. For example,
SHARP [15] prohibits flushing read-only or executable data
in user mode. However, such defenses are found vulnerable to
malicious privileged code (e.g., OS kernel and hypervisor) that
exploits Flush+Reload [27]. The other line of flush countermea-
sures turn to throttle shared data between the attacker and victim
across security domains. For example, The copy-on-access de-
fense [18] and ScatterCache [19] require OS-assistance to iden-
tify security domains for processes and then duplicate shared
data accessed by different security domains. Once the attacker
and victim reside in different security domains, the attacker’s

1545-5971 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0000-8983-683X
https://orcid.org/0000-0003-1188-801X
https://orcid.org/0009-0005-8233-1528
https://orcid.org/0000-0002-1969-2591
mailto:mmli@zju.edu.cn
mailto:kaibu@zju.edu.cn
mailto:clmiao@zju.edu.cn
mailto:kuiren@zju.edu.cn


LI et al.: TREASURECACHE: HIDING CACHE EVICTIONS AGAINST SIDE-CHANNEL ATTACKS 4575

TABLE I
CLASSIFICATION OF CACHE SIDE-CHANNEL ATTACKS EXPLOITING LLC

EVICTIONS [14], [15], [16], [17], [18], [19], [20]

flush instructions and the victim’s accesses hit different copies
of the shared data. Therefore, the attacker can no longer infer
the victim’s access behavior.

Prevention of Conflict-Based Eviction: Defenses against
conflict-based evictions aim to mitigate eviction set construc-
tion [14], [16], [17], [19], [28] or usage [15], [29], [30]. Given
that eviction set construction exploits deterministic mapping
from addresses to cache sets, randomized mapping inspires a
series of defenses against eviction sets. Representative defenses
such as CEASER [14], CEASER-S [28], ScatterCache [19],
PhantomCache [16], and MIRAGE [17] randomize the mapping
function of addresses and cache set indices. They render the
time for constructing an eviction set as unbearably long as over
hundreds of years. Randomized mapping, however, requires
modification of the address mapping logic and leads to both
logic and performance overhead [16].

Some other defenses do not directly throttle eviction set
construction. Instead, they choose to mitigate the eviction effect
by eviction sets. For example, SHARP [15] modifies the cache
replacement policy such that the LLC data selected to evict do
not reside in the victim’s private caches. This way, the eviction
effect leads to no cache miss for the victim and leaves no
exploitable timing difference for the attacker. However, SHARP
is found vulnerable to the Prime+Reprime+Probe attack [31].
Furthermore, RIC [29] and BITP [30] avoid such exploitable
cache misses by mitigating the back-invalidation effect. RIC [29]
relaxes the cache inclusion policy and requires that not all
evicted LLC data be associated with their copies’ invalidation in
private caches. BITP [30] conforms to the inclusion policy yet
prefetches back-invalidated data to negate the back-invalidation
effect.

B. Lack of Efficient Unified Defense

As we investigated in Section I-A, it is highly desirable to ex-
plore an efficient unified defense against both flush-based [15],
[18], [19] and conflict-based evictions [14], [15], [16], [17],
[19], [28], [29], [30]. Table II compares properties of various
defenses and demonstrates why existing defenses can barely
offer an efficient unified solution. Most defenses target either
flush-based or conflict-based evictions instead of both. Sporadic
unified defenses such as SHARP [15] and ScatterCache [19]
combine both types of defending techniques to jointly mitigate
both evictions. They impose not only various hardware modifi-
cations (e.g., addressing mapping logic and cache replacement
logic) but also software modification (e.g., OS assistance), or
being found vulnerable to certain new attacks. Cache partition-
ing [24], [25], [26], [27] even further incurs strict isolation on

TABLE II
QUALITATIVE COMPARISON OF TREASURECACHE WITH EXISTING

SIDE-CHANNEL–ATTACK DEFENSES THAT PREVENT CACHE EVICTIONS

cache organization and turns the shared LLC into a non-shared
resource. This renders the existing unified defense associated
with unbearable performance slowdown.

C. Our Contribution: TreasureCache

In this paper, we present TreasureCache as the first step
toward an efficient unified defense. In comparison with existing
defenses (Table II), TreasureCache prevents both flush-based
and conflict-based evictions yet without performance slowdown
or OS assistance. It breaks this long-standing barrier from a new
perspective. That is, we shun away from wrestling with eviction
prevention. We turn to allow cache evictions as is but hide ex-
ploitable evictions in a specialized small eviction-hidden buffer.
Buffered exploitable evictions no longer induce the attack vector
as when they have to be reaccessed from memory. Reloading
them from the buffer offers a comparative latency as LLC hits.
This prevents them from leading to the broadly exploited timing
channel over LLC hits and misses.

We address various challenges for such a small buffer to
guarantee efficient protection. Two representative challenges
bring forth the following questions.
� How to filter irrelevant non-exploitable evictions out of a

large number of LLC evictions?
� How to prevent the attacker from maliciously evicting

exploitable evictions out of the buffer?
To address the first challenge, we propose a secure placement

policy to identify exploitable evicted blocks that associate with
copies in private caches. This condition takes advantage of the
fact that in attacks such as Flush+Reload, Evict+Reload, and
Evict+Time, the LLC blocks to be evicted are usually cached
in the victim’s private caches. We also identify exploitable
evicted blocks that are replaced by reloads of buffered blocks.
This condition targets Prime+Probe and its variants such as
Prime+Reprime+Prime [31], [33]. To address the second chal-
lenge, we propose a secure replacement policy to restrict each
core from replacing the buffered blocks. Each buffered block is
assumed to be owned by certain cores. Only buffered blocks with

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



4576 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

no bound ownership can be replaced. Such a secure replacement
policy prevents the attacker to revoke the victim core’s own-
ership on buffered exploitable blocks. Finally, we incorporate
a lightweight constant-time flush scheme against Flush+Flush,
without having to disable flush instructions or shared memory.

In summary, we make the following major contributions to
efficiently securing caches against both flush-based and conflict-
based side-channel attacks.
� We advocate allowing cache evictions as is but hide them

in a small specialized eviction-hidden buffer (Section IV).
The buffer replaces traditional LLC misses due to ex-
ploitable evictions with buffer hits that are comparatively
fast as LLC hits. It thus throttles the exploitable timing
difference between LLC hits and misses as well as the
so caused side-channel attacks. Such a defense no longer
suffers from various software or hardware overhead as in
existing eviction-prevention defenses.

� We present TreasureCache to leverage the eviction-hidden
buffer toward a complete and efficient defense against
both flush-based and conflict-based attacks (Section V).
We explore a series of strategies to make our small buffer
suffice for security and efficiency.

� We implement TreasureCache using the gem5 simulator
(Section VI) and validate its security (Section VII) and
performance (Section VIII-A) through extensive analytical
and experiment results. With a hardware overhead of less
than 0.5% (e.g., a 64 KB buffer), TreasureCache reduces
the secret-leakage resolution by about 1,000 times without
introducing any performance slowdown.

II. ATTACK

In this section, we review LLC side-channel attacks for
ease of understanding TreasureCache effectiveness. They can
be classified into flush-based attacks (i.e., Flush+Reload [3]
and Flush+Flush [2]) and conflict-based attacks (i.e.,
Evict+Reload [4], Prime+Probe [1], and Evict+Time [32]).

A. Flush-Based Attacks

Both Flush+Reload [3] and Flush+Flush [2] attacks require
flush privilege and shared data. Specifically, the attacker need
be allowed to invoke flush instructions and to share data with the
victim. This is why the attacker can directly use flush instruc-
tions to evict victim shared data with specific addresses. Flush
instructions are readily supported on most Intel processors.
Shared data can be obtained through shared library or memory
deduplication [2], [3], [4], [18], [34].

Flush+Reload [3] iteratively evicts and reaccesses victim
shared data. Each round of iteration consists of three steps.
� Step 1. Flush: The attacker uses flush instructions such as
clflush to evict victim shared data (if cached) out of the
cache hierarchy.

� Step 2. Wait: The attacker idles for a predefined timing
interval, in which the victim may or may not access the
victim shared data.

� Step 3. Reload: The attacker reloads the victim shared data
and measures the access latency using timing instructions

such as rdtsc. Then the attacker uses the measured
latency to infer whether the victim has accessed the victim
data during the waiting period. If the victim accessed the
victim data therein, the attacker enjoys an LLC hit and
thus fast access while reloading. Otherwise, since the
attacker has already evicted the victim data in step 1, it
encounters an LLC miss that associates with a relatively
long access latency.

Flush+Flush [2] repeatedly issues flush instructions over
victim shared data toward a faster attack speed than that of
Flush+Reload. It removes the Reload step of Flush+Reload.
The key motivation is that flushing cached data is noticeably
slower than flushing uncached data. Therefore, by repeatedly
flushing victim data and measuring flush latency, the attacker
can use the flush speed to infer the victim’s access behavior
during the Wait step.

B. Conflict-Based Attacks

Conflict-based attacks apply to scenarios when shared data
and flush privilege are not simultaneously satisfied. They need
to construct eviction sets with sufficient conflicting addresses,
the accesses of which evict victim data from caches.

Evict+Reload [4] replaces the Flush step of Flush+Reload
with Evict due to lack of privilege for using flush instructions.
Without flush instructions, the attacker employs an eviction
set to evict victim shared data. In the Evict step, the attacker
accesses the conflicting addresses in the eviction set to make
sure that victim shared data are evicted out of the LLC. Lever-
aging cache inclusiveness, the LLC controller further issues a
back-invalidation command to invalidate the copies of victim
shared data in the victim’s private caches.

Prime+Probe [1] no longer requires shared data between the
attacker and victim. Prime+Probe iterates as follows.
� Step 1. Prime: As with the Evict step of Evict+Reload, the

attacker accesses conflicting addresses in a pre-constructed
eviction set. Since these conflicting addresses map to
the same LLC set with that of victim data, the Prime
step helps to fully occupy the set and evict victim data
out of the LLC. Furthermore, back invalidation ensures
the eviction of victim data from the victim’s private
caches.

� Step 2. Wait: The attacker behaves the same as in the Wait
step of Flush+Reload.

� Step 3. Probe: The attacker accesses conflicting addresses
in the eviction set again and measures the access latency.
The measured latency indirectly indicates whether the vic-
tim has accessed victim data in the Wait step. If the victim
has not accessed, all data loaded in the Prime step are still
cached, yielding all cache hits and thus a fast probe speed.
In contrast, if the victim has accessed the victim data in the
Wait step, some loaded data in the Prime step should have
been replaced and thus uncached. This leads to a cache
miss and a slower probe speed than when the victim has
conducted no access.

Evict+Time [32] measures the execution time of the victim
rather than that of the attacker itself. The attacker periodically

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: TREASURECACHE: HIDING CACHE EVICTIONS AGAINST SIDE-CHANNEL ATTACKS 4577

evicts victim data (if cached) by accessing an eviction set of
conflicting addresses that map to the same LLC set with that of
victim data. In between two Evict steps is a Time step, which
triggers victim execution and measures the execution time. If
the victim executes slower than a pre-measured threshold with
cache hits on the victim data, the attacker can infer that the
victim has accessed the victim data during execution. This is
because that the victim data have been evicted in the Evict step;
accessing them in the Time step leads to a cache miss and thus
slows down the victim execution. In the other case, if the victim
takes a comparative execution time with the threshold, it is not
affected by the eviction effect of victim data. The attacker can
thus infer that the victim has not accessed the victim data in the
Time step.

III. THREAT MODEL

We adopt a threat model broadly used in cross-core side-
channel attacks exploiting LLC evictions. The attacker and the
victim run simultaneously on different physical cores sharing
an inclusive LLC [1], [3], [14], [15], [17], [19], [29], [30]. The
number of cores manipulated by the attacker can be also unlim-
ited, as long as they differ from the victim core. The attacker
can deploy any side-channel attacks reviewed in Section II to
monitor the victim’s memory access pattern and further infer
the victim’s secret through the pattern. For instance, the attacker
can use flush instructions in user space to execute the routine
of flush-based attacks such as Flush+Reload and Flush+Flush.
It can also construct the eviction set to conduct conflict-based
attacks such as Evict+Reload, Prime+Probe, and Evict+Time.
Since the attacker and victim are resident in different cores,
we regard each core as a security domain. TreasureCache aims
to prevent the attacker in one security domain from exploiting
cross-core LLC evictions to leak the victim’s secret from another
security domain.

We do not consider same-core attacks where the attacker
shares the same core with the victim. For example, if the at-
tacker running in one process intends to leak secrets from the
victim belonging to another process but on the same core, it
usually uses the L1 cache to construct the side channel [32],
[35], [36], [37], [38]. Prevention of such same-core attacks are
broadly investigated. For example, there are efficient schemes
for protecting the L1 cache [39], [40], [41] but not suitable
for applying to the LLC. Beyond existing schemes targeting
the LLC-based cross-core attacks [14], [16], [17], [19], [28],
[29], [30] as reviewed in Section I-B, TreasureCache aims to
minimize impact on system performance. Furthermore, cache
attacks that exploit the replacement policy [42], [43] and co-
herence protocol [34] are also out of our scope. They can
be respectively throttled by unexploitable replacement poli-
cies [15], [44], [45] or safe coherence protocols [46], [47],
[48].

IV. TREASURECACHE

In this section, we present TreasureCache as the first light-
weight and unified architectural solution against eviction-based

cache side-channel attacks. TreasureCache circumvents various
complexities that traditional solutions wrestle with for avoid-
ing LLC evictions. It allows LLC evictions to take place yet
hides them in a small buffer near the LLC. The eviction-hidden
buffer supports fast access and throttles the exploitable latency
difference between LLC and memory accesses.

A. Motivation

We observe that complexity and overhead of existing defenses
are mainly attributed to their inevitable hardware and software
modifications for preventing cache evictions. To launch a suc-
cessful side-channel attack, the attacker needs to first evict victim
data out of the cache hierarchy. Then the attacker measures the
access latency of its own (e.g., Prime+Probe) or that of the victim
(e.g., Evict+Time) to infer whether the victim has loaded the
evicted victim data back. No wonder, preventing victim data
from being evicted can throttle side-channel attacks. However, as
aforementioned in Section II, two sources of cache evictions are
flush instructions and eviction sets that exploit clflush-alike
instructions and deterministic address mapping, respectively.
Both features are critical for coherence maintenance and perfor-
mance speedup on modern processors. Simply disabling them
prevents cache evictions at the expense of logic modification
and performance slowdown.

In this paper, we are motivated to tackle eviction-based side-
channel attacks from a new perspective—we still allow LLC
evictions but hide potentially exploitable evictions in a newly
introduced lightweight eviction-hidden buffer instead. Such an
eviction hiding technique instantly promises both efficiency and
security. First, by allowing victim-data evictions, we do not have
to struggle with the unavoidable overhead by system modifica-
tions for preventing evictions. Managing a small eviction-hidden
buffer is much more efficient than modifying OS as well as
various cache layers. Second, when the attacker measures the
access latency of victim data (e.g., Flush+Reload, Flush+Flush,
Evict+Reload, Evict+Time) or data evicted by the victim data
(e.g., Prime+Probe), the access request can be served directly
from the fast eviction-hidden buffer instead of slow memory.
This vanishes the traditionally exploitable timing difference and
prevents side-channel attacks.

B. Challenges

The ultimate challenge for TreasureCache is how to use a
small eviction-hidden buffer to hold a large number of poten-
tially exploitable evictions. For simplicity, we may put all evicted
LLC-blocks in the buffer, which expands to a large size for sure.
However, the buffer has to be sufficiently small to guarantee a
fast access speed. Otherwise, accesses over the buffer and the
LLC may still induce a noticeable timing channel. Furthermore,
given a limited buffer size, it is inevitable that some buffered
blocks will be eventually evicted. Once this is the case, the
hidden eviction becomes exposed and the side-channel attack
revives.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



4578 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

C. Strategies

We address the preceding challenges by implementing a fully-
associative eviction-hidden buffer with our specialized secure
placement and replacement policies.

1) Indexed Fully-Associative Architecture: The first-to-go
design strategy is definitely adopting a fully-associative ar-
chitecture for the eviction-hidden buffer. In comparison with
the other two architectural choices—direct-mapped and set-
associative, fully-associative maximizes space utilization. It re-
places a buffered block only when there is no empty slot left.
As an optimization trick, we also devise an indexing scheme to
map the physical memory address to the index of each buffered
block and its states we maintain for enforcing secure replacement
policies.

2) Secure Placement Policy: We solve the challenge of con-
strained buffer size by identifying exploitable evicted blocks
out of many LLC evictions (Section V-C2). For example, given
that side-channel attacks leverage cache inclusiveness [14], [15],
[16], [17], [18], [19], [20], we consider an evicted block ex-
ploitable if it associates with copies in private caches of at least
one core or is replaced by blocks loaded from the eviction-hidden
buffer. Our specification of exploitable evicted blocks greatly
helps to filter non-exploitable evictions from entering the buffer.
We show its filtering effectiveness using SPEC CPU 2017 bench-
marks in Section VII-C. Only about 0.09 exploitable evicted
blocks owned by each core will be buffered in 10,000 cycles on
average. This also addresses the concern about in-buffer eviction
caused by normal programs.

However, as aforementioned in Section IV-B, the attacker
may deliberately generate exploitable evicted blocks to flood the
eviction-hidden buffer. A sophisticated attacker could even spice
up this by generating evictions on multiple cores. We should pre-
vent such exploitable evicted blocks from arbitrarily replacing
buffered blocks. We present a specialized secure replacement
policy to cope with this concern.

3) Secure Replacement Policy: The specialized secure re-
placement policy aims to prevent the attacker from maliciously
evicting buffered exploitable blocks (Section IV-C3). Regarding
each core as a security domain, we notice that a buffered block is
owned by at least one security domain. The secure replacement
should conform to the following restrictions.
� One security domain can only own a limited number of

blocks in the buffer. The specific value is defined as the
TreasureCache parameter.

� If buffering a new block block makes the number of blocks
owned by one security domain exceed the predefined value,
the security domain should release the ownership of an
already buffered block.

� If the eviction-hidden buffer has no free space for buffering
a new block, only buffered blocks owned by no security
domain can be replaced.

This secure replacement is achieved by making the victim’s
security domain always own the exploitable blocks and prevent-
ing the attacker to unilaterally release the victim’s ownership on
them. To this end, TreasureCache assigns two types of ownership
to the LLC evictions and sends them along with data blocks to

the eviction-hidden buffer. The first is its evictor, representing
the core that has evicted the block into the buffer. The other asso-
ciates with its sharers, including any core whose private caches
hold a copy of this block upon its LLC eviction. This way, either
in the Prime+Probe (victim as evictor) or other attacks covered
in Section II (victim as sharer), the victim’s security domain
can own the exploitable blocks. Such ownership regulation also
prohibits the attacker from unilaterally crafting LLC evictions
with the victim core as evictor or sharers to maliciously release
the victim’s ownership on buffered exploitable blocks.

V. DESIGN

In this section, we detail the design of TreasureCache. It ex-
plores a series of efficient techniques to enforce our specialized
placement and replacement policies over LLC evictions within
the small eviction-hidden buffer. Exploitable LLC evictions are
buffered and can be reloaded directly to the LLC upon an LLC
miss that hits in the buffer. We make them hard to be maliciously
evicted out of the buffer by the attacker. They thus become
unexploitable because of no longer leading to distinguishable
access latency as when they were reloaded from memory.

A. Architecture

The newly introduced eviction-hidden buffer locates between
the LLC and memory. It is shared by all CPU cores and trans-
parent to original memory access logics. The buffered data are
potentially exploitable evicted blocks filtered from many more
LLC evictions. They are neither strictly inclusive nor exclusive
of data in the cache hierarchy. In other words, a block replaced
from the eviction-hidden buffer does not necessarily generate
back-invalidation to the LLC and higher-level caches. How the
buffer interacts with the LLC and memory relies on four key
buffer components.
� Data Store stores the data content for each buffered ex-

ploitable evicted block. Buffered blocks are organized in a
fully associative way.

� Secure Placement Policy enforces conditions to identify
exploitable evicted blocks out of LLC evictions. Only
evicted blocks that satisfy the conditions therein need to
be buffered.

� Secure States record the metadata for enforcing the secure
replacement policy. For example, they track the block own-
ers and the number of buffered blocks each core associates
with. These states are updated upon a new block is added
to the buffer or the secure replacement policy is enforced.

� Secure Replacement Policy leverages secure states to avoid
buffered blocks with bound owner from being replaced.
This prevents the attacker to deliberately evict exploitable
blocks from the buffer.

B. Methodology

The eviction-hidden buffer interacts with the LLC upon an
LLC eviction or an LLC miss.

Handling of LLC Evictions: This process aims to accurately
identify exploitable evicted blocks along with their secure states.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: TREASURECACHE: HIDING CACHE EVICTIONS AGAINST SIDE-CHANNEL ATTACKS 4579

Fig. 1. TreasureCache policy for secure handling of LLC evictions.

Specifically, useful states of an evicted block include its evictor
(i.e., the CPU core that evicts this block) and sharers (i.e., the
CPU cores whose private caches hold a copy of this block). We
hitchhike the back-invalidation process upon LLC evictions to
efficiently acquire the sharer information (Section V-C1). They
enable the secure placement policy to decide whether this evicted
block need be buffered. Once the decision favors buffering, the
secure replacement policy may be further invoked if no available
slot exists.

Handling of LLC Misses: We use buffered blocks to serve LLC
misses. If the memory request that misses in the LLC can hit in
the buffer, the buffer can send the requested data to the cache
hierarchy and the requesting core from the buffer immediately.
If the requested block still misses in the buffer, we forward the
request to the lower level memory.

C. LLC Eviction Handling

LLC eviction handling involves with both our specialized
secure placement and replacement policies. Fig. 1 sketches the
workflow for TreasureCache to handle LLC evictions.

1) Sharer Information Acquisition: To process an LLC evic-
tion, we need to determine the evicted block’s sharers as critical
arguments for buffer management policies. In directory-based
coherence protocols [49], each cached block is associated with
a bit vector with as many bits as cores. These bits are called core
valid bits because they indicate on which cores’ private caches
the block may be cached [50], [51]. Specifically, the ith core
valid bit of a block is set if the block has been requested by the ith
core, which has not explicitly sent invalidation to the directory
yet. It seems that we can directly use core valid bits to determine

Fig. 2. Acquisition of sharer information for LLC evictions caused by cache
replacement.

the current sharers of a block. However, these bits may be stale
due to silent eviction of clean blocks in private caches [52].
Existing solutions have to query private caches of each core with
the core valid bit set to obtain precise sharer information [15],
[53]. If we simply apply this query to every LLC eviction as long
as the evicted block has nonzero core valid bits, TreasureCache
would suffer from non-negligible performance overhead.

In order to guarantee TreasureCache efficiency, we only
query private caches for sharer information when necessary.
In common cases, we hitchhike the back-invalidation process.
They respectively apply to two sources of LLC evictions, flush
instructions and cache replacement.

First, for LLC evictions caused by flush instructions, since the
implementation specifics of clflush in x86 are proprietary,
we conservatively query private caches to acquire the sharer
information.

Second, for LLC evictions caused by cache replacement, we
hitchhike the back-invalidation process for efficiently acquir-
ing sharer information. Specifically, we introduce fine-grained
acknowledgement responses (in reaction to invalidation) from
private caches to the LLC controller. In the traditional acknowl-
edgement design, once a block is about to be evicted, the LLC
controller sends the back-invalidation command (BAK_INV)
to private caches of any core with a set core-valid-bit for the
block. Then all the commanded private caches reply the LLC
controller with ACK regardless of whether they hold a copy of
the requested block or not (due to silent eviction). We introduce
a finer-grained ACK through two messages—ACK_EXIST and
ACK_NOTEXIST—for private caches to respectively indicate
existence and non-existence of the requested block. As shown
in Fig. 2, only when the LLC receivesACK_EXIST can it record
the core sending ACK_EXIST as a sharer. Such a finer-grained
ACK brings no extra complexity to the critical path of cache
replacement.

2) Secure Placement Policy: The first category of exploitable
evicted blocks to buffer should associate with copies in one
or more private caches. This condition takes advantage of the
fact that in attacks such as Flush+Reload, Evict+Reload, and
Evict+Time, LLC blocks to be evicted are almost always cached
in the victim’s private caches. For flush-based attacks, the con-
dition holds because of the property that a flush request arrives
at the LLC first before being routed to higher level caches [2].
Flush handling triggers a series of coherence requests from the
LLC to private caches where the block-to-flush still exists. For

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



4580 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

Fig. 3. Secure replacement process.

conflict-based attacks using eviction sets [15], [29], [30], back
invalidation need be issued after an LLC eviction to eventually
evict related copies from private caches.

Furthermore, we should also buffer another category of ex-
ploitable evicted blocks that are replaced by blocks loaded
from the eviction-hidden buffer. Given the first condition, the
evicted blocks accessed by the victim can always be buffered.
However, in the Prime+Probe attack, the attacker probes its own
eviction set to indirectly infer the behavior of exploitable blocks,
rather than load the victim’s block. A sophisticated attacker
may employ the Prime+Reprime+Probe attack [31], [33] to
bypass the first condition. In particular, the attacker manages
to make the exploitable blocks only reside in the LLC and then
waits for the victim’s memory access. Once the victim reloads
a buffered block to LLC, some of the attacker’s in-LLC–only
block will be replaced. We buffer these blocks as well to avoid
LLC hits and misses they induce for the attacker to exploit
otherwise.

3) Secure Replacement Policy: As discussed in Sec-
tion IV-C3, our secure replacement policy specialized inside the
buffer aims to prevent the attacker from evicting buffered ex-
ploitable blocks. Along with sharers and evictors, we introduce
three secure states—security_domain_list per buffered
block, counter per core, and one global_threshold—
for policy enforcement. Fig. 3 sketches the buffer organization
augmented with the secure states. Together they can bind each
block to one or more cores. No core can unilaterally replace
a buffered block that is still bound to some other cores. A
buffered block can be replaced only when all its bound cores have
imposed replacement on it. This way, the attacker can hardly
revive a side-channel attack through first evicting victim blocks
from the LLC and then evicting them from the buffer.

We first define the introduced secure states as follows.
� security_domain_list: Regarding each core as a

security domain, we use security_domain_list per
block to track the block’s evictor and sharers. It is a bit
vector with a length equal to the core count. We say that
the ith core or security domain owns a block if the ith bit
in the block’s security_domain_list is set. When
a new LLC eviction is buffered, we update its evictor and
sharers information in the security_domain_list.

� counter: We use a counter per core to track the
number of buffered blocks owned by each security domain.
A core’s counter increments or decrements upon it has
a new owned block or invalidates ownership from one of
its owned blocks.

� global_threshold: Due to limited buffer capacity,
we predefine a global_threshold to enforce a max-
imum counter for each security domain.

The secure replacement policy takes effect using the above
states in two scenarios. The first is when buffering a new LLC
eviction makes one or more security domain’scounter exceed
global_threshold. The other is when no empty slot is left
for buffering a new LLC eviction. Together, they ensure that
any evicted block crafted by the attacker cannot force a buffered
block owned by the victim to be replaced.

Replacement Upon Counter Overflow: If a security domain’s
counter is about to exceed global_threshold, Trea-
sureCache enforces ownership_invalidation that ran-
domly selects one of the security domain’s owned blocks and
then clears its corresponding bit in the selected block’s se-
curity_domain_list. The security domain then further
owns the newly buffered block, which initially causescounter
overflow.

Replacement Upon Buffer Overflow: When the buffer
has no empty slot to accommodate a new evicted block,
TreasureCache enforces secure_eviction to randomly
replace a buffered block with no declared ownership. That
is, the selected block to replace should have all bits in its
security_domain_list set as 0. We can guarantee the
existence of such blocks by configuring buffer size greater
than or equal to the product of global_threshold
and core count (i.e., the number of security domains).
We now reason about why this condition holds. When
buffer_size > global_threshold× core_count,
there must exist a block that is not claimed by any core.
This is because a core can only own global_threshold
different blocks in the eviction-hidden buffer. At least a number
buffer_size− global_threshold× core_count
of buffered blocks are unclaimed. Once we set
buffer_size = global_threshold× core_count,
an extreme case occurs when each core owns exactly
global_threshold different blocks in the buffer and
no two cores share the same ownership for any buffered block.
The number of owned blocks in the eviction-hidden buffer
then reaches the maximal value. If a core expects to own a
new block in the buffer, it must first trigger the ownership
invalidation process to release its ownership on a previously
buffered block and then allocate this empty slot to the new
block. The ownership_invalidation process hereby
ensures the existence of at least one unclaimed block.

D. LLC Miss Handling

LLC miss handling includes two strategies for fast accessing
the eviction-hidden buffer.

First, we directly use the LLC controller to manage the
eviction-hidden buffer for reducing redundant network traffic.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: TREASURECACHE: HIDING CACHE EVICTIONS AGAINST SIDE-CHANNEL ATTACKS 4581

The data read from the eviction-hidden buffer can be directly
sent to the LLC through the LLC controller.

Second, we organize the eviction-hidden buffer as an in-
dexed fully-associative architecture to accelerate data searching
(Section IV-C1). We store the data store as well as the secure
states using SRAM arrays. For a buffered block, we can use
the same index to access its data and secure states. We achieve
this by using a lookup table to store the mappings from the
physical memory address to the index of buffered data as well
as associative secure states. Specifically, we can implement the
lookup table with content-addressable memory (CAM) [54] and
connect its output port to the data store. When an access request
arrives at the eviction-hidden buffer, we use the lookup table to
quickly decide whether the requested block is buffered and if yes,
obtain the index of it. We then use the index to quickly retrieve
the data and secure states of the requested block. Accessing
data in the CAM-based eviction-hidden buffer can be performed
within two cycles (one cycle for searching the lookup table and
another cycle for obtaining the data [41], [54], [55]). This helps
us gain a comparative searching speed as in a direct-mapped
architecture while enjoying the maximized space utilization
with the fully-associative buffer. We suggest that chip-area
overhead by the eviction-hidden buffer depends on concrete
implementation. However, we can use its requirement of storage
capacity to estimate its relative area overhead in comparison
with that of cache hierarchies. Section VIII-D shows that the
eviction-hidden buffer enforces an affordable storage overhead
about only 0.5% of the LLC capacity. Furthermore, since the
eviction-hidden buffer serves only LLC misses, which already
account for a negligible proportion of overall memory accesses
by design. This helps to indicate limited power consumption by
the eviction-hidden buffer.

E. Dirty Block Overwriting

It is vital to guarantee that the eviction-hidden buffer dose
not affect the program behavior. TreasureCache strictly keeps
the data contents in the eviction-hidden buffer consistent with
DRAM and I/O devices. Two types of operations about dirty
blocks are implemented to maintain such attributes.

First, TreasureCache ensures consistency between the buffer
and DRAM by not buffering any dirty block. Dirty LLC evictions
are simultaneously written back to the eviction-hidden buffer
and memory. Given that the eviction-hidden buffer is neither
strictly inclusive nor exclusive of the cache hierarchy, it is
possible that the LLC eviction selected by the secure placement
policy has already been buffered. In this case, clean evicted
blocks need not be written to the buffer again. Dirty evicted
blocks, however, need to overwrite the buffered copies to avoid
data inconsistency. Such data inconsistency may occur to an
evicted dirty block that is previously reloaded from the buffer
to caches and then modified at least once before being evicted
from the LLC. If we do not overwrite the buffered copy with the
newly evicted dirty block, the latest value gets lost.

Second, while I/O devices initiate DRAM writing requests
through direct memory access (DMA), TreasureCache synchro-
nizes the written content to the corresponding block (if any)

in the buffer. For instance, we assume that the to-be-written
data block is stored in the buffer. At first, the CPU receives the
writing request and begins to invalidate the corresponding block
in caches. The data block in the buffer is not affected. Then, the
system starts to write the memory. The data content in the buffer
is updated along with the DRAM.

F. Constant-Time Flush Instruction

Finally, we integrate constant-time flush instructions into
TreasureCache against Flush+Flush. It would be a luxury to
simply enforce constant-time flush against flush-based attacks
if our eviction-hidden buffer were not adopted. Existing coun-
termeasures have to disable either flush instructions or shared
memory (Section I-A), which are supposed to bring respective
benefits to performance. TreasureCache can use the eviction-
hidden buffer to prevent the Flush+Reload attack. The other
type of the flush-based attack—Flush+Flush [2]—exploits the
timing difference between flushing a cached block and flushing
an uncached block (Section II-A). Flushing a cached block takes
a longer time. It is effective to enforce a comparatively long time
for flushing an uncached block against Flush+Flush [30].

A feasible constant-time flush design is not to abort flush
instructions early in case of LLC misses [2]. Instead, we still
forward the invalidation request to private caches after Treasure-
Cache queries them for sharer information. Even if the queried
cache does not hold the requested block to invalidate, it idles
for a predefined time to imitate an invalidation operation. This
prevents the attacker from inferring whether a flush request hits
or misses in the LLC.

VI. IMPLEMENTATION

We implement TreasureCache using gem5 [56]. As Treasure-
Cache introduces an eviction-hidden buffer to deal with LLC
evictions from one or more cores, we expect that the implemen-
tation emulates accurate cache access behaviors. We thus adopt
the gem5 Ruby build. Its built-in Ruby offers a detailed model
of cache and memory hierarchies to emulate practical handling
of memory accesses [57]. We implement the eviction-hidden
buffer as an LLC extension. We modify the LLC controller to
manage both the LLC and the eviction-hidden buffer.

Settings: We run TreasureCache on a 2.5 GHz out-of-order
CPU. We concentrate more on multi-core settings because the
side-channel attacks under concern aim to steal cross-core se-
crets. The CPU follows typical configuration settings in the
literature [15], [16], [17], [19], [30], [55]. As shown in Ta-
ble III, it adopts a three-layer cache hierarchy and MESI [52],
[58] as the cache coherence protocol. We slightly modify the
back-invalidation process to accommodate the implementation
of sharer information acquisition (Section V-C1). In the baseline
system, the private cache first searches the tag array upon
receiving the back-invalidation command. The search result
determines whether to evict the block indicated by that com-
mand. After the invalidation process completes, the private
cache is supposed to respond to the LLC with ACK signals. In
TreasureCache, we add a selective circuit triggered by different
search results to respond LLC with either ACK_EXIST or

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



4582 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

TABLE III
EXPERIMENT SETUP

ACK_NOTEXIST. The selective circuit can be built with simple
combinational logic, being easily incorporated into the original
time slot and introducing no impact on the overall pipelines.
Therefore, we expect that TreasureCache hitchhikes the back-
invalidation process to acquire the sharer information without
any additional delay. We will validate security and efficiency
of TreasureCache with varying buffer settings in Sections VII
and VIII-A, respectively.

Workloads: We practice TreasureCache with the latest SPEC
CPU 2017 benchmarks [59]. For each benchmark, we execute
the first billion of instructions for warming up the system.
Then we use the second billion of instructions for collecting
performance statistics. Besides measuring the performance of
each individual benchmark, we also generalize workloads using
a mixed set of benchmarks. Specifically, we randomly select
n benchmarks as a mixed workload for an n-core CPU. We
fully warm up the system until every benchmark in the mixed
workload has executed at least one billion of instructions. Then
we collect performance statistics until the slowest benchmark
completes the second billion of instructions.

VII. SECURITY

In this section, we validate the security of TreasureCache.
Our goal for cache protection is guaranteeing a low resolution
of secret recovery that cannot lead to practical side-channel
attacks. This requires TreasureCache to maintain any exploitable
eviction in the eviction-hidden buffer for a sufficiently long
time. The buffer structure should also deliver a comparative hit
latency with that of the LLC. We sketch the timeline of buffered
exploitable evictions against various exploitations as follows.
� t0∼t1: This is the time period where TreasureCache should

accurately identify exploitable LLC evictions and place
them in the buffer (Section VII-A).

� t1∼t2: TreasureCache should guarantee an indistinguish-
able latency for LLC hits and buffer hits (Section VII-B).
This ultimately hides the access latency gap that otherwise
exist between LLC accesses and memory accesses. After
exploitable evicted blocks are buffered, TreasureCache
should also prevent the attacker from maliciously replacing
them out of the buffer (Section VII-C).

� t2 onwards: After a buffered exploitable block is eventually
evicted, TreasureCache should guarantee that the so caused
buffer misses bring forward no additional security issues
than traditional LLC misses (Section VII-C).

A. Secure Placement of Exploitable Evictions

Our secure placement policy cannot be evaded by the attacker.
As presented in Section V-C2, there are two categories of
exploitable LLC evictions for TreasureCache to buffer. Each
category calls for a respective placement policy.

The first policy requires that LLC evictions with associative
copies in private caches should be buffered. To bypass this
policy, the attacker needs to evict exploitable blocks from the
victim’s private caches before evicting them from the LLC. This
contradicts with the settings of cross-core side-channel attacks of
our interest, where back invalidation triggered by LLC evictions
is a main source for the attacker to indirectly evict data from the
victim’s private caches. In Flush+Reload, Evict+Reload, and the
Evict+Time attack, the attacker thus has no means to evict data
from the victim’s private caches first, and thus cannot evade the
first placement policy.

The second policy requires that LLC evictions induced by
reloaded blocks from the eviction-hidden buffer should also be
buffered. It complements TreasureCache with the capability to
buffer exploitable evictions that target the attacker’s own data.
Such exploitable data need be evicted by victim data. The at-
tacker can deliberately make them locate in only the LLC rather
than its own private caches (e.g., Prime+Reprime+Probe [31],
[33]). This helps the attacker’s data to evade the first placement
policy. To further evade the second policy, the attacker needs to
make sure that TreasureCache does not buffer the victim data it
evicts using an eviction set during the prime or reprime phase.
However, the attacker cannot manipulate the victim’s data to this
end because of the first placement policy.

B. Indistinguishable Buffer-Hit and LLC-Hit

We use measurements to demonstrate that loading blocks
from the eviction-hidden buffer shows an indistinguishable la-
tency as an LLC hit. Specifically, we build a multi-core micro
benchmark that randomly issues load and store operations. We
then run it on TreasureCache and sample 1,000 access latencies
for either of LLC hits and buffer hits in comparison with that
of buffer misses. As shown in Fig. 4, access lantencies of both
LLC hits and buffer hits are centralized around 24 cycles. This
closes the door for a timing difference that the attacker craves
for when reloading exploitable evicted blocks from the buffer.

C. Unexploitable Secret-Recovery Resolution

Finally, we show that TreasureCache can buffer exploitable
evicted blocks for a sufficiently long time and leave the attacker
with an unexploitable secret-recovery resolution. In Treasure-
Cache, the attacker might observe the victim’s memory access
if buffered exploitable blocks are evicted out of the eviction-
hidden buffer within one attacking epoch. The corresponding
probability mainly depends on the rate of owning new blocks

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: TREASURECACHE: HIDING CACHE EVICTIONS AGAINST SIDE-CHANNEL ATTACKS 4583

Fig. 4. Comparison of access latency over LLC and eviction-hidden buffer.

for the victim’s security domain. This is because only the victim
per se can revoke its ownership of buffered exploitable blocks.
To make this probability above 0.5 (greater than probability
of random guessing), the attacker is required to prolong the
attacking epoch. However, this reduces the attack resolution and
the attacker fails to recover secrets.

We investigate the number of newly owned blocks for evicting
a buffered exploitable block. This highly depends on the value
g of global_threshold that upper bounds the number of
owned buffered blocks per security domain. Upon owning a
new block, the victim’s security domain is required to already
own a number global_threshold of buffered blocks to
invalidate its ownership of one of its owned blocks by own-
ership_invalidation (Section IV-C3). The best case for
the attacker is that buffering this new block can also make the
de-owned buffered block be evicted out of the buffer through
secure_eviction. In practice, a de-owned buffered block
can survive at least for a certain amount of time. We conserva-
tively use the attacker’s most favorable case to lower bound its
attack cost. Given random invalidation, the buffered exploitable
block can be de-owned with probability of 1

g . Every run of
ownership_invalidation triggered by a newly buffered
block is independent. Let N denote the number of newly owned
blocks for eventually replacing the buffered exploitable block. It
follows the geometric distribution with the success probability
for each trial as 1

g :

Pr(N = k) =
1

g
×
(
1− 1

g

)k−1

. (1)

The cumulative distribution function of N is as follows.

FN (k) = 1−
(
1− 1

g

)k

. (2)

Consider global_threshold is set as 128 for example,
where 128 is a well accepted security parameter for limiting
space per security domain using cache partitioning [55]. In
TreasureCache, the true positive rate (TPR) for the attacker
can be formulated by the cumulative distribution function of
N . To make it above 0.5, k should be greater than 89. Fig. 5
reports the rate of owning new blocks for each core in SPEC
CPU 2017 benchmarks. The results show that each core owns
only about 0.09 block on average to the buffer every 10,000
cycles. Taking both of the preceding factors into account, we can

Fig. 5. Number of additional buffered LLC evictions owned by each security
domain per 10,000 cycles. The results are derived by running SPEC 2017
benchmarks on a two-core CPU.

estimate that the attacker needs an attacking epoch more than
89
0.09 × 10,000 = 9, 888, 888 = 9.89× 106 cycles. According
to SHARP [15], in a successful cache side-channel attack the
attacking epoch should be set within 2,500-10,000 cycles. A
larger attacking epoch would make the secret-recovery resolu-
tion unexploitable [3]. Given that TreasureCache has reduced the
attack resolution by 1,000 times, the attacker can hardly leak any
useful information.

VIII. PERFORMANCE

Metrics: In this section, we evaluate TreasureCache perfor-
mance using two typical metrics—instructions per cycle (IPC)
and misses per 1,000 instructions (MPKI). The baseline cache
measures MPKI using LLC misses while TreasureCache uses
buffer misses instead because the small eviction-hidden buffer
in TreasureCache delivers a comparative hit latency as LLC
hits (Fig. 4). For performance comparison, both metrics are
normalized over that of the baseline cache.

Results: It has been a luxury to outperform the baseline cache
hierarchy while securing it against both flush-based and conflict-
based side-channel attacks. To the best of our knowledge, Trea-
sureCache is the first to break this barrier. TreasureCache can
improve the IPC of baseline by 0.03%∼0.28% with 1∼8 cores
on a 2.5 GHz processor. Such a performance gain requires only
a small buffer of 8∼64 KB, bringing an affordable storage
overhead less than 0.5% of the LLC capacity.

A. Overall Performance

We start with evaluating overall performance of Treasure-
Cache on single-core and multi-core systems. Without loss of
generality, we instantiate a multi-core system with a two-core
processor. Performance scalability with more cores will be
evaluated in Section VIII-C. As aforementioned in Section VI,
we run mixed benchmarks for multi-core evaluation. A set of
mixed benchmarks for a two-core processor consists of two
randomly chosen SPEC benchmarks. Each is pinned to one
of the two cores for execution and statistics collection. Given
global_threshold set as 128 and block size set as 64
bytes, we configure the eviction-hidden buffer with size of
8× core-count KB. We calculate the normalized metrics
for each core and average them over the core count.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



4584 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

Fig. 6. TreasureCache performance on a single-core system.

Fig. 7. Normalized IPC of TreasureCache with varying global_threshold.

Fig. 8. TreasureCache performance on a two-core system.

Figs. 6 and 8 report the normalized performance metrics of
TreasureCache over that of baseline for single-core and two-core
evaluation, respectively. On the single-core system, Treasure-
Cache outperforms the baseline in terms of a 0.03% higher IPC
and a 0.35% lower MPKI on average. On the two-core system,
TreasureCache shows a much higher speedup. It outperforms
the baseline in terms of a 0.06% higher IPC and a 7.08% lower
MPKI on average. TreasureCache offers such performance gains
because it turns many memory accesses due to LLC misses into
buffer hits, which are fast as LLC hits.

B. Buffer Capacity

We continue with evaluating how buffer capacity impacts
TreasureCache performance. More specifically, we tune buffer
capacity with different global_threshold settings. As

Fig. 9. Normalized MPKI of TreasureCache with varying global_threshold.

Fig. 10. Normalized IPC of TreasureCache with increasing core count.

described in the Section IV-C3, the eviction-hidden buffer
size is greater than or equal to global_threshold×
core-count. Given a fixed core count, the buffer size in-
creases with the value of global_threshold. On the two-
core system with 64-byte blocks, we evaluate TreasureCache
with global_threshold of 64, 128, 256 and 512 blocks
and buffer size of 8 KB, 16 KB, 32 KB, and 64 KB, respectively.

Figs. 7 and 9 compare performance of TreasureCache
with that of baseline as global_threshold varies. We
expect a higher IPC and a lower MPKI upon a larger
global_threshold. Larger global_thresholds bring
a larger eviction-hidden buffer, which can buffer more blocks
and prevent their subsequent reuse from much slower memory
accesses. In addition, our indexed fully-associative architecture
speeds up the buffer access. This helps to reduce the impact
of buffer size on lookup latency. Figs. 7 and 9 conform to
the expected trend. TreasureCache increases the IPC of base-
line by 0.06%∼0.09% and reduces the MPKI of baseline by
6.40%∼8.29% with global_threshold ranging from 64
to 512. This encourages adopters of TreasureCache to strive for
more performance gains using a large buffer, as long as they
consider the corresponding storage cost affordable.

C. Processor Capacity

We now evaluate the scalability of TreasureCache given more
cores. Specifically, we run mixed benchmarks on four-core and
eight-core systems. Fig. 10 reports the corresponding IPC of
TreasureCache normalized over that of baseline. TreasureCache
averagely increases the IPC of baseline by 0.27% and 0.28%

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: TREASURECACHE: HIDING CACHE EVICTIONS AGAINST SIDE-CHANNEL ATTACKS 4585

Fig. 11. Normalized MPKI of TreasureCache with increasing core count.

TABLE IV
STORAGE OVERHEAD

on the four-core system and the eight-core system, respectively.
Furthermore, as shown in Fig. 11, TreasureCache reduces the
MPKI of baseline by 8.98% and 11.27% given four cores and
eight cores, respectively.

In summary, TreasureCache offers more performance gains
as the system scales. We thus expect TreasureCache to be well
adaptive to large-scale systems.

D. Storage Overhead

Finally, we investigate the storage overhead of Treasure-
Cache. It introduces an extra eviction-hidden buffer beyond
the cache hierarchy. The buffer stores exploitable evicted data,
mappings of their physical addresses to buffer indices (Sec-
tion V-D), and secure states such as per–buffered-block se-
curity_domain_list, per-core counter, and a single
global_threshold. Given a system with a number c of
CPU cores, m-bit physical addresses, 64-byte blocks, and
global_threshold set as g, we can approximate the storage
overhead of different types of information in the buffer as in
Table IV. The overall storage cost buffer is as follows:

c× g × (log2 (c× g) +m+ 512) + (c+ 1)× log2 g. (3)

Following a conventional LLC configuration with 2 MB per
core (Table III) [15], [16], [17], [30], [55], we can normalize the
buffer’s storage overhead over LLC storage space.

buffer

c× 2× 106 × 8
≈ g × (log2 (c× g) +m+ 512)

1.6× 107
. (4)

It turns out to be relatively insensitive to core count. This further
validates scalability of TreasureCache.

To put the storage overhead in a real context, we consider
modern processors with 64-bit physical addresses (i.e., m =
64). We consider a sufficiently large global_threshold

of g = 128 for guaranteeing security (Section VII-C). Under
such practical settings, TreasureCache requires only a c× (9 +
log2 c
64 ) KB buffer space by (3) and introduces an only 0.45%

storage overhead by (4).

IX. RELATED WORK

In this section, we review related work that applies a buffer in-
side the cache hierarchy and is thus considered relevant to Trea-
sureCache. Such a structural design strategy has been exploited
to improve cache performance [60], secure cache directory [61],
and defend against transient execution attacks [62], [63], [64].
Next, we will show how our TreasureCache differs from these
solutions.

Jouppi [60] has proposed to improve direct-mapped caches
with a small fully-associative victim cache. This cache tempo-
rally stores evictions from the direct-mapped cache. When the
CPU reaccesses these evicted blocks, they are loaded from the
victim cache to the direct-mapped cache again. The victim cache
in [60] and the eviction-hidden buffer in our TreasureCahce
can both preserve the blocks evicted from the higher level
cache. However, the traditional victim cache is not designed for
security. It thus cannot effectively hide the exploitable blocks
and an intelligent attacker can easily circumvent its protection.
For a shared victim cache, the attacker can craft any number
of conflict blocks at any time into it to evict the exploitable
blocks, as long as the attacker can manipulate enough CPU cores.
This makes the traditional victim cache expose to side-channel
attacks. As a main contribution of our paper, TreasureCache
develops placement and replacement policies to filter exploitable
blocks and prevent the attacker to interfere with the exploitable
blocks.

SecDir [61] initiates protection of non-inclusive caches
against side-channel attacks [65]. Such side-channel attacks
targeting non-inclusive caches exploit the inclusive directory
structure to leak secret [65]. For a non-inclusive LLC, there ex-
ists a structure called Extended Directory (ED) around the LLC
to maintain the coherence states of cache lines in L2 cache but
not in the LLC. The attacker can maliciously induce conflicts in
ED to transfer exploitable blocks from the L2 cache to the LLC.
The timing difference between the L2 cache and LLC/DRAM is
used to infere the secret [65]. SecDir [61] complements ED with
Victim Directory (VD) to defeat directory side-channel attacks.
To prevent the attacker from creating inclusion victim through
the eviction of the directory entries, VD is used to buffer the
conflicting TD entry. However, the sophisticated attacker may
also evict the buffered TD entry. SecDir further assigns each core
a VD and enforces hard isolation between different cores. This
prohibits the malicious from evicting the directory entry of the
victim core. Unlike SecDir, TreasureCache does not enforce hard
isolation for the eviction-hidden buffer. The exploitable blocks
evicted from the LLC can still be shared by multiple cores. Not
enforcing hard isolation serves for both efficiency and security. If
we enforce hard isolation to the eviction-hidden buffer and make
the victim core own the exploitable block, the timing difference
may be still detectable during attacker’s reload operation. On
the contrary, if the attacker core owns the exploitable block, it

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



4586 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

can easily evict the exploitable block from the eviction-hidden
buffer. As a result, TreasureCache uses the secure replacement
policy to dynamically partition the buffer. TreasureCache allows
each core having access to the blocks which are resident in the
eviction-hidden buffer while preventing the malicious core from
unilaterally evicting the buffered exploitable blocks.

TreasureCache can be slightly adapted to protect non-
inclusive caches against side-channel attacks. Similar to the case
for protecting inclusive caches, each L2 cache can associate with
an eviction-hidden buffer. This buffer is used to preserve L2
evictions due to ED conflicts. Once an ED conflict occurs, infor-
mation of the sharer and the evictor can be acquired from the ED
and transited along with the back-invalidation command (i.e.,
invalidate the conflicted exploitable block in the L2 cache). Trea-
sureCache can uses the received information to decide whether
to store the exploitable block in the eviction-hidden buffer and
tag it with the victim’s ownership. Upon being reloaded, the
data block will be served from the eviction-hidden buffer. This
prevents potential timing channels. Moreover, the suggested
adaptation is different from SecDir because TreasureCache dose
not alter the directory structure and still allows transferring
exploitable blocks. It simply accelerates the access of exploitable
blocks to confuse the attacker.

A series of defenses against cache-based transient execution
attacks [62], [63], [64] also use a buffer to avoid transient instruc-
tions exploiting cache states. For example, InvisiSpec [62] and
MuonTrap [63] use a Speculative Buffer (SB) or an L0 cache
to hide data blocks loaded by unsafe instructions. Only when
they are deemed as correct path instructions can the associated
data blocks be placed into the original cache hierarchy. Different
from the eviction-hidden buffer, SB and L0 cache are not used
to store the cache evictions. They thus are orthogonal with the
eviction-hidden buffer. Apart from that, Revice [64] employs a
victim cache to preserve data blocks replaced by the transient
cache lines. When restoring the cache states changed by the
transient instructions, Revice can quickly retrieve data blocks
in the victim cache. Although the additional buffer in [62],
[63], [64] can be used to hide exploitable blocks, it still follows
the aforementioned intrinsic limitation of the traditional victim
cache. That is, they are not effective for defeating eviction-
based cache side-channel attacks and thus cannot supersede the
eviction-hidden buffer.

X. CONCLUSION

We have studied the idea of buffering exploitable LLC evic-
tions to prevent cache side-channel attacks without sacrific-
ing performance. It has been a luxury to outperform unpro-
tected caches while securing them against both flush-based and
conflict-based attacks. The root cause lies in their inevitable
hardware and software modifications for preventing cache evic-
tions. Using our specialized small eviction-hidden buffer, we can
afford to allow cache evictions yet hide exploitable evictions
in the buffer. Buffer hits are comparatively fast as LLC hits.
This closes the timing channel that otherwise exists between
LLC hits and misses. We implement the eviction-buffering idea
through TreasureCache. Extensive analytical and experiment

results show that TreasureCache not only guarantees security
but also improves performance.

ACKNOWLEDGMENT

We would like to sincerely thank the Editors and Reviewers
of IEEE Transactions on Dependable and Secure Computing
for your review efforts and helpful feedback. We also wish you
health and safety during the pandemic.

REFERENCES

[1] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proc. IEEE Symp. Secur. Privacy,
2015, pp. 605–622.

[2] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush flush: A fast and
stealthy cache attack,” in Proc. Int. Conf. Detection Intrusions Malware
Vulnerability Assessment, Springer, 2016, pp. 279–299.

[3] Y. Yarom and K. Falkner, “FLUSH RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in Proc. 23rd USENIX Conf. Secur.
Symp., 2014, pp. 719–732.

[4] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks: Au-
tomating attacks on inclusive last-level caches,” in Proc. USENIX Secur.
Symp., 2015, pp. 897–912.

[5] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic analysis of
randomization-based protected cache architectures,” in Proc. IEEE Symp.
Secur. Privacy, 2021, pp. 987–1002.

[6] S. B. Dutta, H. Naghibijouybari, N. Abu-Ghazaleh, A. Marquez, and K.
Barker, “Leaky buddies: Cross-component covert channels on integrated
CPU-GPU systems,” in Proc. 48th Annu. Int. Symp. Comput. Architecture,
2021, pp. 972–984.

[7] A. Agarwal et al., “Spook.js: Attacking chrome strict site isolation
via speculative execution,” in Proc. IEEE Symp. Secur. Privacy, 2022,
pp. 699–715.

[8] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “SpecHammer:
Combining spectre and rowhammer for new speculative attacks,” in Proc.
IEEE Symp. Secur. Privacy, 2022, pp. 681–698.

[9] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre:
Stealing intel secrets from SGX enclaves via speculative execution,” in
Proc. IEEE Eur. Symp. Secur. Privacy, 2019, pp. 142–157.

[10] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in Proc.
12th USENIX Conf. Offensive Technol., 2018, Art. no. 3.

[11] M. Lipp et al., “Meltdown: Reading kernel memory from user space,” in
Proc. USENIX Secur. Symp., 2018, pp. 973–990.

[12] J. Cook, J. Drean, J. Behrens, and M. Yan, “There’s always a bigger fish:
A clarifying analysis of a machine-learning-assisted side-channel attack,”
in Proc. 49th Annu. Int. Symp. Comput. Architecture, 2022, pp. 204–217.

[13] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “PACMAN: Attacking
ARM pointer authentication with speculative execution,” in Proc. 49th
Annu. Int. Symp. Comput. Architecture, 2022, pp. 685–698.

[14] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in Proc. IEEE/ACM 51st Annu. Int.
Symp. Microarchitecture, 2018, pp. 775–787.

[15] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-aware
cache replacement policy (SHARP): Defending against cache-based side
channel attacks,” in Proc. 44th Annu. Int. Symp. Comput. Architecture,
2017, pp. 347–360.

[16] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “PhantomCache: Obfuscating cache
conflicts with localized randomization,” in Proc. Annu. Netw. Distrib. Syst.
Secur. Symp., 2020, pp. 1–17.

[17] G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating conflict-based cache
attacks with a practical fully-associative design,” in Proc. USENIX Secur.
Symp., 2021, pp. 1379–1396.

[18] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2016, pp. 871–882.

[19] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S.
Mangard, “SCATTERCACHE: Thwarting cache attacks via cache set
randomization,” in Proc. USENIX Secur. Symp., 2019, pp. 675–692.

[20] W. Song, B. Li, Z. Xue, Z. Li, W. Wang, and P. Liu, “Randomized last-level
caches are still vulnerable to cache side-channel attacks! But we can fix
it,” in Proc. IEEE Symp. Secur. Privacy, 2021, pp. 955–969.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: TREASURECACHE: HIDING CACHE EVICTIONS AGAINST SIDE-CHANNEL ATTACKS 4587

[21] D. Ojha and S. Dwarkadas, “TimeCache: Using time to eliminate cache
side channels when sharing software,” in Proc. ACM/IEEE 48th Annu. Int.
Symp. Comput. Architecture, 2021, pp. 375–387.

[22] J. Van Bulck et al., “Foreshadow: Extracting the keys to the intel SGX
kingdom with transient out-of-order execution,” in Proc. USENIX Secur.
Symp., 2018, pp. 991–1008.

[23] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding eviction
sets,” in Proc. IEEE Symp. Secur. Privacy, 2019, pp. 39–54.

[24] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative execution
processors,” in Proc. IEEE/ACM 51st Annu. Int. Symp. Microarchitecture,
2018, pp. 974–987.

[25] F. Liu et al., “CATalyst: Defeating last-level cache side channel attacks
in cloud computing,” in Proc. IEEE Int. Symp. High Perform. Comput.
Architecture, 2016, pp. 406–418.

[26] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“SecDCP: Secure dynamic cache partitioning for efficient timing channel
protection,” in Proc. ACM/EDAC/IEEE 53rd Des. Autom. Conf., 2016,
pp. 1–6.

[27] X. Dong, Z. Shen, J. Criswell, A. L. Cox, and S. Dwarkadas, “Shielding
software from privileged side-channel attacks,” in Proc. USENIX Secur.
Symp., 2018, pp. 1441–1458.

[28] M. K. Qureshi, “New attacks and defense for encrypted-address cache,”
in Proc. ACM/IEEE 46th Annu. Int. Symp. Comput. Architecture, 2019,
pp. 360–371.

[29] M. Kayaalp et al., “RIC: Relaxed inclusion caches for mitigating LLC
side-channel attacks,” in Proc. ACM/EDAC/IEEE 54th Des. Autom. Conf.,
2017, pp. 1–6.

[30] B. Panda, “Fooling the sense of cross-core last-level cache eviction based
attacker by prefetching common sense,” in Proc. 28th Int. Conf. Parallel
Architectures Compilation Techn., 2019, pp. 138–150.

[31] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$ A: A shared cache attack
that works across cores and defies VM sandboxing–and its application to
AES,” in Proc. IEEE Symp. Secur. Privacy, 2015, pp. 591–604.

[32] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: The case of aes,” in Proc. Cryptographers’ Track RSA Conf., 2006,
pp. 1–20.

[33] D. Kumar, C. S. Yashavant, B. Panda, and V. Gupta, “How sharp
is SHARP?,” in Proc. 13th USENIX Conf. Offensive Technol., 2019,
Art. no. 4.

[34] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence protocol
states vulnerable to information leakage?,” in Proc. IEEE Int. Symp. High
Perform. Comput. Architecture, 2018, pp. 168–179.

[35] O. Aciiçmez, “Yet another microarchitectural attack: Exploiting i-cache,”
in Proc. ACM Workshop Comput. Secur. Architecture, 2007, pp. 11–18.

[36] O. Acıiçmez and W. Schindler, “A vulnerability in RSA implementations
due to instruction cache analysis and its demonstration on OpenSSL,” in
Proc. Cryptographers’ Track RSA Conf., 2008, pp. 256–273.

[37] B. B. Brumley and R. M. Hakala, “Cache-timing template attacks,” in
Proc. 15th Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2009, pp. 667–684.

[38] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing access-
based cache attacks on AES to practice,” in Proc. IEEE Symp. Secur.
Privacy, 2011, pp. 490–505.

[39] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache archi-
tecture thwarting cache side-channel attacks,” IEEE Micro, vol. 36, no. 5,
pp. 8–16, Sep./Oct. 2016.

[40] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced
performance and security,” in Proc. IEEE/ACM 41st Int. Symp. Microar-
chitecture, 2008, pp. 83–93.

[41] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proc. 34th Annu. Int. Symp. Comput.
Architecture, 2007, pp. 494–505.

[42] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth, “RELOAD
REFRESH: Abusing cache replacement policies to perform stealthy cache
attacks,” in Proc. USENIX Secur. Symp., 2020, Art. no. 111.

[43] W. Xiong and J. Szefer, “Leaking information through cache LRU states,”
in Proc. IEEE Int. Symp. High Perform. Comput. Architecture, 2020,
pp. 139–152.

[44] W. Xiong, S. Katzenbeisser, and J. Szefer, “Leaking information through
cache LRU states in commercial processors and secure caches,” IEEE
Trans. Comput., vol. 70, no. 4, pp. 511–523, Apr. 2021.

[45] Y. Cui, C. Yang, and X. Cheng, “Abusing cache line dirty states to leak
information in commercial processors,” in Proc. IEEE Int. Symp. High
Perform. Comput. Architecture, 2022, pp. 82–97.

[46] F. Yao, M. Doroslovački, and G. Venkataramani, “Covert timing channels
exploiting cache coherence hardware: Characterization and defense,” Int.
J. Parallel Program., vol. 47, no. 4, pp. 595–620, 2019.

[47] C. Miao, K. Bu, M. Li, S. Mao, and J. Jia, “SwiftDir: Secure cache
coherence without overprotection,” in Proc. IEEE/ACM 55th Int. Symp.
Microarchitecture, 2022, pp. 662–677.

[48] K. Loughlin, S. Saroiu, A. Wolman, Y. A. Manerkar, and B. Kasikci,
“MOESI-prime: Preventing coherence-induced hammering in commodity
workloads,” in Proc. 49th Annu. Int. Symp. Comput. Architecture, 2022,
pp. 670–684.

[49] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, “The
directory-based cache coherence protocol for the dash multiprocessor,”
ACM SIGARCH Comput. Archit. News, vol. 18, pp. 148–159, 1990.

[50] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Memory per-
formance and cache coherency effects on an intel nehalem multiproces-
sor system,” in Proc. 18th Int. Conf. Parallel Architectures Compilation
Techn., 2009, pp. 261–270.

[51] R. Singhal, “Inside intel core microarchitecture (nehalem),” in Proc. IEEE
Hot Chips Symp., 2008, pp. 1–25.

[52] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer
on memory consistency and cache coherence,” Synth. Lectures Comput.
Archit., vol. 15, no. 1, pp. 1–294, 2020.

[53] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr, and J. Emer, “Achieving
non-inclusive cache performance with inclusive caches: Temporal locality
aware (TLA) cache management policies,” in Proc. IEEE/ACM 43rd Annu.
Int. Symp. Microarchitecture, 2010, pp. 151–162.

[54] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE J. Solid-
State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006.

[55] G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “HybCache: Hybrid side-
channel-resilient caches for trusted execution environments,” in Proc.
USENIX Secur. Symp., 2020, pp. 451–468.

[56] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011.

[57] Ruby home page, 2024. [Online]. Available: https://www.gem5.org/
documentation/general_docs/ruby

[58] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” in Proc. 11th Annu. Int.
Symp. Comput. Architecture, 1984, pp. 348–354.

[59] J. Bucek, K.-D. Lange, and J. V. Kistowski, “SPEC CPU2017: Next-
generation compute benchmark,” in Proc. ACM/SPEC Int. Conf. Perform.
Eng., 2018, pp. 41–42.

[60] N. P. Jouppi, “Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers,” in Proc. 17th Annu.
Int. Symp. Comput. Architecture, 1990, pp. 364–373.

[61] M. Yan, J.-Y. Wen, C. W. Fletcher, and J. Torrellas, “SecDir: A secure
directory to defeat directory side-channel attacks,” in Proc. ACM/IEEE
46th Annu. Int. Symp. Comput. Architecture, 2019, pp. 332–345.

[62] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas,
“InvisiSpec: Making speculative execution invisible in the cache hierar-
chy,” in Proc. IEEE/ACM 51st Annu. Int. Symp. Microarchitecture, 2018,
pp. 428–441.

[63] S. Ainsworth and T. M. Jones, “MuonTrap: Preventing cross-domain
spectre-like attacks by capturing speculative state,” in Proc. 47th Annu.
Int. Symp. Comput. Architecture, 2020, pp. 132–144.

[64] S. Kim et al., “ReViCe: Reusing victim cache to prevent speculative cache
leakage,” in Proc. IEEE Secure Develop., 2020, pp. 96–107.

[65] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J.
Torrellas, “Attack directories, not caches: Side channel attacks in a non-
inclusive world,” in Proc. IEEE Symp. Secur. Privacy, 2019, pp. 888–904.

Mengming Li received the master’s degree from the
School of Software Technology, Zhejiang University,
Hangzhou, China. His research interest includes com-
puter architecture.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 

https://www.gem5.org/documentation/general_docs/ruby
https://www.gem5.org/documentation/general_docs/ruby


4588 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

Kai Bu (Member, IEEE) received the BSc and MSc
degrees in computer science from the Nanjing Uni-
versity of Posts and Telecommunications, Nanjing,
China, in 2006 and 2009, respectively, and the PhD
degree in computer science from The Hong Kong
Polytechnic University, Hong Kong, in 2013. He is
currently an associate professor with the College of
Computer Science and Technology, Zhejiang Univer-
sity, Hangzhou, China. His research interests include
network security and computer architecture. He is a
member of the ACM, and the CCF. He is a recipient

of the Best Paper Award of IEEE/IFIP EUC 2011 and the Best Paper Nominee
of IEEE ICDCS 2016.

Chenlu Miao is currently working toward the mas-
ter’s degree with the School of Software Technology,
Zhejiang University, Hangzhou, China. Her research
interest includes computer architecture.

Kui Ren (Fellow, IEEE) is professor and associate
dean of the College of Computer Science and Tech-
nology, Zhejiang University, where he also directs the
Institute of Cyber Science and Technology. Before
that, he was SUNY Empire Innovation professor with
the State University of New York at Buffalo. His
research interests include data security, IoT security,
AI security, and privacy. He received many recogni-
tions including Guohua Distinguished Scholar Award
of ZJU, IEEE CISTC Technical Recognition Award,
SUNY Chancellor’s Research Excellence Award,

Sigma Xi Research Excellence Award, NSF CAREER Award, etc. He has
published extensively in peer-reviewed journals and conferences and received
the Test-of-time Paper Award from IEEE INFOCOM and many Best Paper
Awards from IEEE and ACM, including ACM MobiSys, IEEE ICDCS, IEEE
ICNP, IEEE Globecom, ACM/IEEE IWQoS, etc. He is a fellow of ACM. And he
serves on the editorial boards of many IEEE and ACM journals. He also serves
as chair of SIGSAC of ACM China Council, a member of ACM ASIACCS
steering committee, and a member of S&T Committee of Ministry of Education
of China.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 20,2025 at 06:52:21 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


